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Abstract—The automatic rendering of oil painting style video
has great artistic and commercial application value. Temporal
consistency is the bottleneck of video rendering. However, existing
translation methods are either designed for images, or have
high training/inference costs on videos due to the estimation of
optical flows. This paper explores how to render videos in oil
painting styles without video training data. We adopt a motion-
based regularization in the training phase and a feature statistics
sharing strategy in the inference phase. Experiments show that
our model can render vivid and temporally smooth oil painting
videos.

I. INTRODUCTION

Oil painting has been one of the most common artistic
styles for several centuries, spreading from Europe to the rest
of the world. In the past, oil painting requires professional
skills. Nowadays, with the development of computer vision,
automatic tools for rendering digital photos to oil paintings
have emerged [1], [2]. In this paper, we focus on a more
difficult task: automatically making oil painting videos. It has
important application prospects in many fields, including but
not limited to film and television production, video social
platforms, advertising media, and art design.

Style transfer is a classical technique for automatic painting.
Early methods [3], [4] are based on texture synthesis. In 2015,
Gatys et al. [1], [5] first used pretrained neural networks [6]
to characterize artistic styles. This technique is called neural
style transfer (NST). The core of NST is to match feature
distributions [7]. Later on, various distribution matching poli-
cies have been adopted for style transfer [8]–[10]. Some works
also focus on speeding up the style transfer process by building
feed-forward frameworks. These methods can be classified into
per-style-per-model [11], multiple-style-per-model [12], [13],
and arbitrary-style-per-model [14]–[17].

To extend style transfer from image to video, temporal con-
sistency has been introduced into optimization algorithm [18]
and network design [19]. Despite the huge success of style
transfer, oil painting is still a hard case for state-of-the-art
methods. It is because oil painting has vivid stoke textures,
rich and dense colours, and a wide range from light to dark.
Moreover, many style transfer methods require a reference
style image, which is hard to obtain in many cases and
improper to ask the user to prepare.

Instead of using style transfer, we render oil painting videos
based on generative adversarial networks (GANs), which have

* Corresponding Author. This work was supported by the National Natural
Science Foundation of China under Contract No.62172020, and a research
achievement of Key Laboratory of Science, Technology and Standard in Press
Industry (Key Laboratory of Intelligent Press Media Technology).

better synthesis ability and do not require a reference artwork.
Pix2Pix [20] is the first image-to-image translation model,
which can learn a mapping between two image domains,
e.g., a photo and a painting domain. To get rid of the
requirement of paired training data, CycleGAN [2] introduces
a cycle mapping loop into the training pipeline. Huang et
al. [21] later proposed multi-modal unsupervised image-to-
image translation (MUNIT). Huang et al. assumed that the
image representation can be decomposed into a content code
that is domain-invariant, and a style code that captures domain-
specific properties. MUNIT recombines the content code with
a random style code sampled from the style space of the
target domain. In this way, MUNIT is capable of one-to-many
mapping, which can provide more choices for users. Although
these GAN models are powerful for rendering oil paintings,
they are designed for images and can cause temporal flicking
when applied to videos.

To generate sequences that are both temporally smooth
and realistic in individual frames, some researchers explore
the task of video translation. ReCycleGAN [22] learns a
recurrent temporal predictor and introduces a new cycle loss
across domains and time. Engelhardt et al. [23] used temporal
discriminators that take consecutive frames. Recent approaches
estimate optical flow to characterize temporal consistency.
Vid2Vid [24] combines the optical flow and video-specific
constraints. Mocycle-GAN [25] explicitly models the motion
across frames in the form of optical flow throughout the
translation. Park et al. [26] computed flow field to warp the
previous output frame onto the current time step. Although
optical flow can efficiently characterize the motion across
frames, it requires extra computation, which takes a higher
cost. Moreover, existing optical flow estimation techniques
are not robust enough to handle complex motion and object
appearance in real scenes, limiting the practical application of
existing video translation models.

To introduce across-frame motion without optical flow,
we propose a simple but comprehensive solution for video
translation. Our solution consists of two parts: training and
inference. For training, we generate artificial transformations
that are able to mimic the motion and local distortion of real
videos. Based on this artificial transformation, we introduce
a regularization that can guide models to maintain temporal
consistency even without video training data. For inference, we
point out that instance normalization layers introduce inter-
frame variation and propose to eliminate the bad effects of
instance normalization by sharing the feature statistics among
the whole sequence. Through our regularization-based tempo-
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Fig. 1: Comparison of training guidance in different methods.

ral consistency learning and sharing normalization strategies,
our model can generate vivid and temporally smooth oil paint-
ing videos. Experimental results demonstrate the effectiveness
of our model. Our strategies can also be extended to other
video translation tasks, such as season and flower translation.

The rest of the paper is organized as follows. Sec. II
introduces the proposed temporally consistent oil painting
video translation framework. Experimental results are shown
in Sec. III and concluding remarks are given in Sec. IV.

II. PROPOSED METHOD

In this section, we introduce the detailed designs of our oil
painting video translation framework.

A. Regularization-based Temporal Consistency Learning

Many video-based methods adopt a temporal loss, which is
as follows:

||F(Xt)− Warp(F(Xt−1), Ot−1→t)||, (1)

where Xt is the first frame, Xt−1 is the second frame, and
Ot−1→t is the optical flow from Xt−1 to Xt. Warp(X,O)
represents warping the frame X based on the optical flow O. F
represents the translation network. This temporal loss restricts
that when we warp the translated result F(Xt−1) from time
t − 1 to time t, it should look similar to the translated result
F(Xt). An example is shown in Fig. 1a.

The problem is that both frames Xt−1, Xt, and the cor-
responding optical flow Ot−1→t need to be provided by the
dataset. However, accurate Ot−1→t is hard to obtain as stated
in the previous section. In this paper, we propose a training
strategy that does not require estimating optical flow.

Given an image X , instead of finding the second frame
in the dataset, we synthesize a fake second frame X ′ by a
random optical flow O. An example is shown in Fig. 1b. The
benefits are twofold. On the one hand, since the second frame
is generated by the optical flow, the optical flow is 100%
accurate. On the other hand, since only the “first frame” X
needs to be provided by the dataset, we even do not need
videos for training, which explicitly improves the convenience
of training.

To generate the fake second frame X ′, we consider two
kinds of cross-frame translations. One is object movement,
which is represented by a random optical flow O. The other
one is a noise δ, such as camera noise and video compression
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Fig. 2: The inference pipeline of MUNIT [21].

noise. Combine O and δ, we generate the fake second frame
as follows:

X ′ = Warp(X,O) + δ. (2)

Finally, our temporal regularization is as follows:

Ltmp = ||F(X ′)− Warp(F(X), O)||. (3)

To implement an oil painting video translation model, we
adopt MUNIT [21] as the baseline. MUNIT is an unsupervised
image-to-image translation method, which can learn trans-
lation without paired data. Moreover, MUNIT can generate
multiple results given the same input.

Combining our temporal regularization into the training
pipeline of MUNIT, the final training objective is as follows:

min
E1,E2,G1,G2

max
D1,D2

L(E1, E2, G1, G2, D1, D2) =

Lx1

GAN + Lx2

GAN + λx(Lx1
recon + Lx2

recon) +

λc(Lc1
recon + Lc2

recon) + λs(Ls1
recon + Ls2

recon) +

λcyc(Lx1
cyc + Lx2

cyc) + λt(Lx1
tmp + Lx2

tmp), (4)

where λx, λc, λs, λcyc and λt are weights that balance
different loss terms, x1 represents photographs, and x2 rep-
resents oil painting images. LGAN is the adversarial loss that
matches the distribution of translated images to the real oil
painting distribution. Lrecon and Lcyc are bidirectional and
cycle reconstruction losses. Ei, Gi, and Di represent encoders,
decoders, and discriminators. Please refer to [21] for their
detailed definition.

B. Sharing Normalization
In image-to-image translation models, instance normaliza-

tion layers are commonly used. For example, the framework
of MUNIT in the inference phase is shown in Fig. 2. We
can see that there are instance normalization layers in the
residual blocks of the content encoder. AdaIN [14] layers in
the decoder also have instance normalization. The problem
is that instance normalization computes independent statistics
(feature mean and variance) for each frame. The inconsistent
statistics across frames introduce flicking in video translation,
harming temporal consistency.

To solve this problem, we share the statistics for the whole
testing video, as illustrated in Fig. 3. We first feed the
frames and obtain the mean µFt

and variance σFt
in instance

normalization layers. Then, we calculate the average mean
µavg and variance σavg:

µavg =
1

T

∑T

t=1
µFt , σavg =

1

T

∑T

t=1
σFt , (5)
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Fig. 3: An illustration for sharing normalization.

(a) Photographs

(b) Oil painting images

Fig. 4: Samples of our video translation training data.

where T is the number of frames in the sequence. Finally,
we use the averaged statistics to replace the original frame-
wise statistics. Through this strategy, the bad effect of instance
normalization layers can be eliminated without extra price.

III. EXPERIMENTS

A. Experimental Settings

Dataset Preparation. To train the oil painting video transla-
tion model, we collect 7038 photographs and 3401 oil painting
images from a series of CycleGAN [2] datasets. The training
resolution is 256× 256. We split 6287 photographs and 2559
oil painting images for training, and 842 photographs and 751
oil painting images for evaluation.
Training Settings. Experiments are conducted on GeForce
RTX 2080 Ti and Intel® Xeon® CPU E5-2650 v4 @
2.20GHz. The training takes 500k iterations. We follow [21]
for other parameter settings.
Evaluation Settings. Temporal consistency is evaluated by
the widely-used temporal loss [18]. The testing videos are
collected from Bilibili1, a video sharing website. Denote the
t-th input frame as Xt, the temporal loss between the t-th and
the (t− 1)-th frame is computed as follows:

||Mt−1→t ⊙ Warp(F(Xt−1), Ot−1→t)−F(Xt)||, (6)

1https://www.bilibili.com/

TABLE I: Temporal loss and FID under different λt values.

λt Temporal loss ↓ FID ↓
Baseline 0 0.0479 125.10

10 0.0416 126.54
Ours 15 0.0312 153.37

20 0.0307 154.35

TABLE II: Performance w/ and w/o sharing normalization.

Temporal loss ↓ FID ↓
w/o sharing 0.0427 126.54
w/ sharing 0.0416 126.54

where Ot−1→t denotes the estimated ground truth optical flow,
which is predicted by PWC-Net [27]. The occlusion mask
Mt−1→t is responsible for eliminating the effects of incorrect
optical flow predictions and changes in object appearance.
Given Ot−1→t, Mt−1→t is defined as follows:

∇t−1→t = ||Warp(Xt−1, Ot−1→t)−Xt||1, (7)
M̄t−1→t = τ − CLIP(∇t−1→t, τ − 1, τ), (8)
Mt−1→t = M̄t−1→t × (1− Warp(1, Ot−1→t)), (9)

where 1 is an all-ones matrix, CLIP(·, αmin, αmax) is a clip-
ping function. We set τ to 10 based on experience. Intuitively,
we first characterize incorrect optical flow predictions and
object appearance difference by M̄t−1→t, then add movements
that are out of space.

To evaluate the synthesis quality, we use Fréchet inception
distance (FID) [28] as follows:

||µd − µg||22 + tr(Σd +Σg − 2
√
ΣdΣg), (10)

where µ and Σ refer to the mean and covariance matrix of the
Inception V3 [29] features. µd and Σd are of real oil painting
images, and µg and Σg are of generated results. The real oil
painting images are from the testing set of our collected data.

B. Ablation Study

We first evaluate the effectiveness of our designs for main-
taining temporal consistency.

As shown in Table I, without the proposed temporal con-
sistent regularization (i.e., λt = 0), the model has a tem-
poral loss of about 0.05. With λt increasing, the temporal
loss decreases, which demonstrates the effectiveness of our
motivation. However, λt has a negative effect of hurting the
synthesis quality. When λt > 10, the FID score becomes more
than 150. It is because MUNIT has a limited model ability.
Therefore, forcing MUNIT to maintain temporal consistency
reduces its capacity to render oil painting styles. To maintain
a good balance between temporal consistency and synthesis
quality, we choose λt = 10 in the following experiments.

Next, we evaluate the effectiveness of sharing the mean and
variance of normalization layers. With sharing normalization,
the temporal loss decreases from 0.0427 to 0.0416. Since shar-
ing normalization does not change the single-frame synthesis
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Fig. 5: Results of oil painting images translation.

Input Sample Translations

Fig. 6: Results of 256×256 oil painting video translation. The
top row is the input and other rows are the outputs.

process, the FID score stays the same. In summary, sharing
normalization can improve temporal consistency without hurt-
ing the performance of synthesizing oil painting videos.

C. Quantitative Results

Results on images are shown in Fig. 5. Our model can
generate vivid oil painting textures, and transfer the color
into a classic tone. Moreover, for the same image, our model
can generate diverse results, which has high flexibility and
usability in practical applications.

Video oil painting rendering results are shown in Fig. 6.
Although the input video has flowing clouds and rivers, our
model generates temporally smooth sequences, verifying its
robustness in real scenes.

Moreover, despite training on 256 × 256 resolution, our
model can be applied to videos of higher resolution. As shown
in Fig. 7, on unseen 512× 512 resolution, our model can still
render vivid oil painting texture without flickering artifacts,
demonstrating the generalization of our method.

D. Application

Besides oil painting, our model can be applied to other video
translation tasks as well. We first show results for summer-to-
winter season translation in Fig. 8a. Training data is collected

Fig. 7: Results of 512×512 oil painting video translation. The
top row is the input and other rows are the outputs.

(a) Summer to winter

(b) Dandelion flower to ripe fruits

Fig. 8: Results of other video translation tasks. For each group,
the top row is the input and the bottom row is the output.

from [2]. Although there is a color variation of the sky and
mountain in the input sequence, our model is not disturbed by
them and generates a temporal smooth video.

We further show a hard case of flow translation, which has
severe shape deformation. Training data is collected from [22].
As shown in Fig. 8b, our model generates a smooth flower
blooming video, demonstrating the robustness of our method.

IV. CONCLUSION

In this paper, we build an oil painting video stylization
framework. We adopt a regularization-based learning strategy
and share statistics in the inference phase. Our model can
render vivid and temporally smooth oil painting videos.
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